USN


10EE61

## Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019

## Power System Analysis and Stability

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting
at least TWO questions from each part.

## PART - A

1 a. Draw the PU Reactance diagram for power system showm in Fig.Q1(a). Select the base values of $20 \mathrm{MVA}, 6.6 \mathrm{KV}$ in the generator 1 circuit. The ratings of various components are: Generator 1: $10 \mathrm{MVA}, 6.6 \mathrm{kV}, \mathrm{X}^{\prime \prime}=0.1 \mathrm{p} . \mathrm{u}$
Generator 2: $20 \mathrm{MVA}, 11.5 \mathrm{KV}, \mathrm{X}^{\prime \prime}=0.1 \mathrm{p} . \mathrm{u}$
Transformer $\mathrm{T}_{1}=10 \mathrm{MVA}, 3$ phase, $6.6 / 115 \mathrm{KV}, \mathbb{X}=0.15$ p.u.
Transformer $\mathrm{T}_{2}=3$ single phase units each rated $10 \mathrm{MVA}, 7.5 / 75 \mathrm{KV}, \mathrm{X}=0.1 \mathrm{pu}$.


Fig.Q1(a)
(12 Marks)
b. What are the advantages of per unit quantities? Show that:

$$
\text { PU reactance }{ }_{\text {new }}=\text { PU reactance } \text { given }^{\text {base } \mathrm{MVA}_{\text {new }}} \frac{\text { base } \mathrm{KV}^{2} \text { old }}{\text { base } \mathrm{MVA}_{\text {old }}} \times \frac{\text { base }^{2} \mathrm{KV}^{2} \text { new }}{\text {. }} .
$$

2 a. Explain in detail the transients on a transmission lime due to short circuit.
(08 Marks)
b. A transmission line of inductance $L=0.1 \mathrm{H}$ and resistance $\mathrm{R}=5 \Omega$ is suddenly short circuited at $t=0$, at the far end of the line as shown in Fig.Q2(b). If the source voltage is $v=100 \sin (100 \pi t+15)$. Obtain the following:
i) Expression for the short circuit currert, $\mathrm{i}(\mathrm{t})$
ii) Value of the first current maximum (maximum momentary current).
iii) Instant of shlort circuit so that DC off set current is zero.
iv) Instant at which DC offset cunrent is maximum.


Fig.Q2(b)
(12 Marks)
3 a. Derive the relation between sequence components of phase and line voltages in star connected systems.
(08 Marks)
b. A delta connected balanced resistive load is connected across an unbalanced 3 phase supply as shown in Fig.Q3(b). With currents in lines A and B specified, find the symmetrical components of line currents. Also, find the symmetrical components of delta currents (phase-currents).


Fig.Q3(b)
(12 Marks)
4 a. Draw the positive, negative and zero sequence network for the power system shown in Fig.Q4(a). Choose a base of $50 \mathrm{MVA}, 220 \mathrm{KV}$ in the $j 50 \Omega$ transmission line and mark all reactances in per unit. The ratings of generators and transformers are
Gen 1: $25 \mathrm{MVA}, 11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Gen 2: 25 MVA, $11 \mathrm{KV}, \mathrm{X}^{\prime \prime}=20 \%$
Transformers (each) : $20 \mathrm{MVA}, 11 \mathrm{Y} / 220 \mathrm{Y} \mathrm{KV}, \mathrm{X}=15 \%$. The negative sequence reactance of each synchronous machine is equal to the sub transient reactance. The zero sequence reactance of each machine is $8 \%$. Assume that the zero sequence reactance of lines are $250 \%$ of their positive sequence reactance.


Fig.Q4(f)
(14 Marks)
b. Derive an expressiهn for complex power in terms of symmetrical components.
(06 Marks)

## PART - B

a. Derive an expression for fault current in case of double line to ground fault on an unloaded generator. Draw the interconneation of sequence network.
(10 Marks)
b. A 3 phase generator with constant internal voltages gave the fault current values 1.4 KA for a L-L fault and 2.2 KA for a L-G fault. If $\mathrm{E}_{\mathrm{as}}=2 \mathrm{KV}, \mathrm{X}_{1}=2 \Omega$, determine the reactance $\mathrm{X}_{2}$ and $X_{0}$.
(10 Marks)
a. A salient pole generator without dampers is rated $20 \mathrm{MVA}, 13.8 \mathrm{KV}$ and has a direct axis subtransient reactance of 0.25 per unit. The negative and zero sequence reactances are 0.35 and 0.10 per unit respectivaly. The neutral of the generator is solidly grounded. Determine the subtransient current in the generator and the line to line voltages for subtransient conditions when a single line to ground fault occurs at the generator terminals with the «enerator operating unlœaded at rated voltage. Neglect resistance.
b. Write a note on series type of faults.

7 a. Derive an expression for swing equation.
( 10 Marks)
b. A loss free alternator supplies 50 MW to an infinite bus. The SSSL being 100 MW , determine if the alternator will remain stable if the input to the prime mover of the alternator is abruptly incneased by 40 MW .
(10 Marks)
8 a. Explain equal area criterion when there is sudden change in input.
b. Analyze in detail the 3 phase induction motor with unbalanced voltage.


10EE63

## Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019

## Electrical Machine Design

Time: 3 hrs.
Max. Marks: 100

## Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. <br> 2. Design data book may be used. <br> 3. Assume missing data suitably.

## PART - A

1 a. What are the important cønsiderations for the design of electrical machines? Explain in brief and what are its limitatiens.
( 10 Marks)

$$
\mathrm{P}^{\prime}=\frac{0.03 \mathrm{E}^{\prime} \mathrm{VqA}}{\mathrm{PN}} \mathrm{KW}
$$

whene $\mathrm{E}^{\prime}=$ average voltage between adjacent conductor segments.
$\mathrm{V}=$ peripheral speed of the generator $\mathrm{m} / \mathrm{sec}$.
ii) Find the maximum output fon a lap wound d.c. generator running at 600 rpm and provided with 40,000 ampere conductors per meten of armature periphery. ( $\mathbf{1 0}$ Marks)

2 a. Derive the output equation of DC machine.
(10 Marks)
b. During the design of armature of a $1000 \mathrm{KW}, 500 \mathrm{~V}, 10$ pole, 300 rpm , d.c. compound generator, following information has been obtained:

- External diameten of armature 1.4 m
- Gross core length, 0.35 m
- Flux per pole, 0.105 wb .

Based on the above, design information, find out the fallowing details regarding the design of field system:
i) Axial length of the pole
ii) Width of the pole
iii) Height of the pole
iv) Pale arc

Pernmissible loss per square meter of the caoling surface may be assumed $700 \mathrm{~W} / \mathrm{mt}^{2}$. Assume missing data as per the rating of the machine.
( 10 Marks)
3 a. Show that with usual notations Volts/turn $E_{1}=K \sqrt{\text { K.V.A }}$ in the case of a transformer. Explain the facticrs to be taken into account while selecting the value of constant $K$.
(10 Marks)
b. Calculate: (i) Net cross section of core (ii) Gross area of the core (iii) Core dimensions (iv) Window area (v) dimensions of the window, for a $200 \mathrm{kVA}, 6600 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase, shell type, oil immersed, self cooled, distribution transformer based on the following design parameters.
Window space factor, $\mathrm{K}_{\mathrm{w}}=0.28$
Average current density, $\delta=2.2 \mathrm{~A} / \mathrm{mm}^{2}$
Maximum flux density in the core, $\mathrm{B}_{\mathrm{m}}=1.1$ Tesla
Rectangular core proportion $=1.8: 1$
Net cross-section of copper in the window is 0.2 time the net cross section of iron in the core.
(10 Marks)

4 a. Explain the step by step procedure for the design of cooling tubes and calculation of temperature rise in a transformer.
( 10 Marks)
b. A $300 \mathrm{KVA}, 11000 / 440 \mathrm{~V}, 50 \mathrm{~Hz}, 3$ phase, delta/star, cone type oil immersed, self cooled transformer give the following results during the design calculations of magnetic frame and windings.
Centre to centre distance between the cores $=36 \mathrm{omr} ; \quad$ Height of the window $=44 \mathrm{~cm}$;
Height of the yoke $=17 \mathrm{~cm} ; \quad$ Total weight of the magnetic frame $=700 \mathrm{~kg}$;
Average specific loss (Iron) $=2.1 \mathrm{~W} / \mathrm{kg}$; Outer diameter of HV winding $=35 \mathrm{~cm}$
Resistance of LV winding per phase $=0.0047$ ohm ; $\quad$ Resistance of HV winding per phase $=9.74$ ohms. Based on the above design data, calculate the following:
i) The dimensions of the tank
ii) The temperature rise of the transformer with plain tank
iii) Number of cooling tubes, if the temperature rise is not to exceed $35^{\circ} \mathrm{C}$.
(10 Marks)

## PART - B

5 a. Deduce for a 3 phase indrction motor expression showing the relationship between H.P output, its main dimensions, speed, the specific electric and magnetic loadings, efficiency and power factor.
(10 Marks)
b. Determine the main dimensions, number of radial ventilating ducts number of stator slots and the number af turns per phase of a $3.7 \mathbf{K W Y}, 400 \mathrm{~V}, 3 \phi, 4$ pole, 50 Hz , cage induction motor to be sllorted by a star-delta shorter. Assume $\mathrm{B}_{\mathrm{av}}=0.45 \mathrm{~Wb} / \mathrm{mt}^{2}$, ac $/ \mathrm{m}=23000$, efficiency $=0.85$ and power factor $=0.84$ lagging.
(10 Marks)
6 a. Discuss in detail, the criteria to be consiđered for determining the number of rotor slot of a cage induction motor.
(10 Marks)
b. A 3 phase, 3000 volts, $260 \mathrm{KM}, 50 \mathrm{~Hz}, 10$ pole squirrel cage induction motor gave the follawing results during its preliminary design.
Internal diameter of stator $=75 \mathrm{~cm} \quad$ Gross length of stator $=35 \mathrm{~cm}$
Number of stator slots $=125 \quad$ Number of conductor per slot $=10$
Based on the above detail, calculate the follawing for the squirrel cage rotor.
i) Total losses in the rotor bars
ii) Losses in the end rings
iii) Equivalent resistance of the roton in terms of stator.
(10 Marks)
7 a. Explain the design procedure to determine the pole dimensions for a salient pole synchronous machine.
(10 Marks)
b. During the design of stator af 3 phase, $7.5 \mathrm{KVA}, 6.6 \mathrm{KV}, 50 \mathrm{~Hz}, 3000 \mathrm{rpm}$, turbo generator following information have been obtained.
Internal diameter of stator $=0.75 \mathrm{~m}$
Gross length of core $=0.9 \mathrm{~m}$
Number of stator slots per pole per phase $=7$
Sectional area of stator conductor $=190 \mathrm{~mm}^{2}$
Number of conductors per slot $=4$
Based upon the above data, calculate the following:
i) Flux per pole
ii) Specific magnetic loading
iii) Speciffic electrical loading
iv) Current density for the stator winding.
(10 Marks)
8 a. Derive the output equation of synchronous generator.
(10 Marks)
b. Design the field coil of a 3 phase, 16 poles, 50 Hz salient pole alternator based on the following design information:
Diameter of statør at the gap surface $=1.0 \mathrm{~m}$ Section of pole body $=0.15 \mathrm{~m} \times 0.3 \mathrm{~m}$
Ampere turms per pole $=6500$
Assume suitable data wherever necessary.

Gross length of stator core $=0.3 \mathrm{~m}$
Height of the pole $=0.15 \mathrm{~m}$
Exciter voltage $=110$
$\square$

# Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Digital Signal Processing 

Time: 3 hrs.
Max. Marks:100

## Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. (i) If DFT $[x(n)]=X(K)$, then show that $\operatorname{DFT}\left[x((c-n))_{N}\right]=X((c-K))_{N}$.
(ii) $\operatorname{DFT}\left[\mathrm{x}^{*}(\mathrm{n})\right]=\mathrm{X}^{*}(\mathrm{n}-\mathrm{K})$
(iii) $\operatorname{DFT}\left[\mathrm{x}(\mathrm{n}) \mathrm{e}^{\mathrm{j} 2 \pi / \mathrm{n} / \mathrm{N}}\right]=\mathrm{X}((\mathrm{K}-l))_{\mathrm{N}}$.
(12 Marks)
b. Find DFT of the sequence, $x(n)=\left\{\begin{array}{ll}1 ; & 0 \leq n \leq 2 \\ 0 ; & \text { Otherwise }\end{array}\right.$ for $N=4$, plot $|X(K)|$ and $\underline{X(K)}$.
(08 Marks)
2 a. Make a comparison between circular convolution and linear convolution. Given $x_{1}(n)=\{1,-1,-2,3,-1\}$ and $x_{2}(n)=\{1,2,3\}$. Find the circular convolution of $x_{1}(n)$ and $x_{2}(\mathrm{n})$.
b. What are the two methods of sectional convolution? Explain them.
(10 Marks)
(10 Marks)
3 a. Let $x(n)$ be a finite length sequence with $X(K)=(10,-2+j 2,-2,-2-j 2)$. Using the properties of DFT find the DFT's of the following sequence:
(i) $\mathrm{x}_{1}(\mathrm{n})=\mathrm{x}((\mathrm{n}+2))_{4}$ and
(ii) $x_{2}(n)=x(4-n)$
(08 Marks)
b. If $\mathrm{x}(\mathrm{n})=\{1,2,0,3,-2,4,7,5\}$, evaluate the following :
(i) $\mathrm{X}(0)$
(ii) $\mathrm{X}(4)$
(iii) $\sum_{\mathrm{K}=0}^{7} \mathrm{X}(\mathrm{K})$.
(iv) $\sum_{K=0}^{7}|\mathrm{X}(\mathrm{K})|^{2}$
(08 Marks)
c. What are the difference and similarities between DIT and DIF-FFT algorithms? (04 Marks)

4 a. Compute the 8-pt DFT of the sequence, $x(n)=\{0.5,0.5,0.5,0.5,0,0,0,0\}$ using the inplace radix-2 DIT algorithm.
(10 Marks)
b. Derive the Radix-2 DIF-FFT algorithm to compute the DFT of a $\mathrm{N}=8$ pt. sequence and draw the complete signal flow graph.
(10 Marks)

## PART - B

5 a. Develop a transformation for the solution of a first order linear constant coefficient difference equation by using trapezoidal approximation for the internal approximation. High light the features of transformation.
(08 Marks)
b. Design a digital LPF with a passband magnitude characteristic that is constant within 0.75 dB for frequencies below $\mathrm{w}=0.2613 \pi$ and stop band attenuation of atleast 20 dB for frequencies between $w=0.4018 \pi$ and $\pi$. Determine the transfer function $H(z)$ for the lowest order butterworth design which meets the specifications. Use bilinear transformation. Assume T = 2 sec .
(12 Marks)

6 a. The transfer function of analog filter is given by $H_{a}(s)=\frac{1}{(s+1)(s+2)}$. Find $H(z)$ using impulse invariance method, if $\mathrm{F}_{\mathrm{S}}=5$ samples $/ \mathrm{sec}$.
b. Distinguish between butterworth and chebyshev (Type I) filters.
c. Describe the transformation relation used for converting an analog LPF into, (i) LPF
(ii) HPF
(iii) BPF
(iv) BSF both in Analog domain and Digital domain.
(10 Marks)
7 a. What are the advantages and disadvantages with the design of FIR filters using window function?
(06 Marks)
b. The frequency response of a FIR filter is given by, $\mathrm{H}\left(\mathrm{e}^{j w}\right)=\mathrm{jw} ;-\pi \leq \mathrm{w} \leq \pi$. Design the filter, using a rectangular window function. Take $\mathrm{N}=7$.
(08 Marks)
c. The frequency response of a linear phase FIR filter is given by, $H\left(e^{j w}\right)=e^{j 3 w}[2+1.8 \cos 3 w+1.2 \cos 2 w+0.5 \cos w]$. Find the impulse response sequence of the filter.
(06 Marks)
8 a. Let the coefficients of a three stage FIR lattice structure be $K_{1}=0.1, K_{2}=0.2, K_{3}=0.3$. Find the coefficients of direct form FIR filter and draw its block diagram.
(08 Marks)
b. A discrete time system $\mathrm{H}(\mathrm{z})$ is expressed as,
$H(z)=\frac{10\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{2}{3} z^{-1}\right)\left(1+2 z^{-1}\right)}{\left(1-\frac{3}{4} z^{-1}\right)\left(1-\frac{1}{8} z^{-1}\right)\left[1-\left(\frac{1}{2}+j \frac{1}{2}\right) z^{-1}\right]\left[1-\left(\frac{1}{2}-j \frac{1}{2}\right) z^{-1}\right]}$.
Realize parallel and cascade forms using second order sections.
(12 Marks)
$\square$

# Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Electrical Engineering Materials 

Time: 3 hrs .
Max. Marks: 100

## Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

## PART - A

1 a. Explain free electron theory for metals.
(05 Marks)
b. Explain Fermi - Dirac distribution for conducting materials.
(05 Marks)
c. What are the properties of Lamp filaments?
(05 Marks)
d. What are the properties of fuse material?

2 a. List out types of semi conductor and name any four compound semiconductors.
(05 Marks)
b. Explain Hall effect with diagram.
(05 Marks)
c. Explain properties of Hard and Soft magnetic materials.
(05 Marks)
d. What is the importance of permeability?
(05 Marks)

3 a. Compare electronic and Ionic polarizations with necessary equations for both static and alternating fields.
(10 Marks)
b. Explain the necessary equations and diagram dipolar relaxation and dielectric loss. ( 10 Marks)

4 a. Explain properties and applications of mica and porcelain.
(10 Marks)
b. Write short note on transformer oil.
(05 Marks)
c. Write short note on SF6 gaseous insulating materials.
(05 Marks)

## PART - B

5 a. What are the selective coating properties?
(05 Marks)
b. Explain Alkaline Fuel cell operation with neat diagram.
(05 Marks)
c. Write short note on solar cell.
(05 Marks)
d. What are applications of different kind of fuel cells?
(05 Marks)
6 a. Explain nuclear magnetic resonance.
(05 Marks)
b. Explain electron spin resonance.
(05 Marks)
c. Explain optical microscopy.
(05 Marks)
d. Explain atomic absorption spectroscopy.
(05 Marks)
7 a. What are properties and applications of magnetostrictive materials? (05 Marks)
b. What are the properties and applications of piezoelectric materials?
(05 Marks)
c. What are the properties and applications of shape memory alloys?
(05 Marks)
d. What are the properties and applications of smart hydrogels?
(05 Marks)
8 a. What are the different applications of ceramic material as conductor and insulators?
b. Write short notes on thermoplastics?
c. What are the properties of thermostats?
d. What are general properties of ceramic materials?

